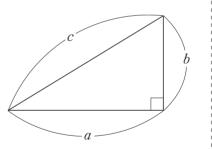
令和3年度

入 学 試 験 問 題

数学


------ 注 意

- ・問題は 11 から 6 までで、6ページにわたって印刷してあります。
- ・試験時間は50分です。
- ・計算が必要なときは、問題用紙の余白を利用しなさい。
- ・答えは、問題の指示に従って、解答欄の決められた場所に濃く、はっきりと書きなさい。
- ・答えを直すときは、きれいに消してから、新しい答えを書きなさい。
- ・答えはすべて別紙解答用紙に明確に記入し、解答用紙だけを提出しなさい。
- ・円周率はπとします。
- ・必要があれば以下の定理を利用しなさい。

三平方の定理

直角三角形の直角をはさむ 2 辺の長さを a, b, 斜辺の長さを c とすると次の関係式が成り立ちます。

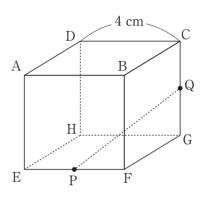
$$a^2 + b^2 = c^2$$

繁 東洋大学

東洋大学京北高等学校

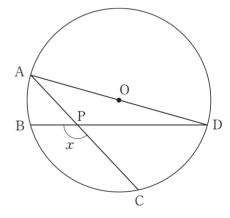
- 1 次の問いに答えなさい。
- 問1 次の計算をしなさい。

$$(1) \quad -x^2y \times \{-(-3y)^2\} \div \left(-\frac{3}{2}xy\right)^3$$

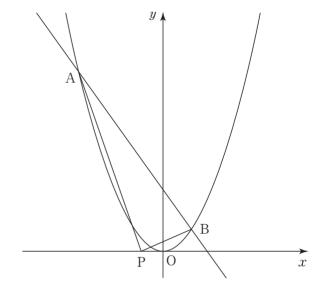

(2)
$$\left(\sqrt{2} + \sqrt{4} + \sqrt{8} + \sqrt{16} + \sqrt{32}\right)^2$$

問2 次の方程式を解きなさい。

(1)
$$\begin{cases} 2(x+y) - 3(x-4) = 6\\ \frac{x}{2} - \frac{2y-4}{3} = 2 \end{cases}$$


(2)
$$5(x+2)^2 = 3(x+1)^2$$

- | 2 | 次の問いに答えなさい。
 - (1) $a^3b a^2b 72ab$ を因数分解しなさい。
 - (2) $\sqrt{\frac{2}{5}n}$ が 1 桁の自然数となるような最も大きい自然数 n を求めなさい。
 - (3) 関数 $y = ax^2$ について、x の変域が $-2 \le x \le 3$ のとき、y の変域は $b \le y \le 18$ となりました。 このとき、a, b の値を求めなさい。
 - (4) 右の図のように、立方体 ABCD―EFGH があり、辺 EF、 CG の中点をそれぞれ P、Q とします。このとき、線分 PQ の長さを求めなさい。



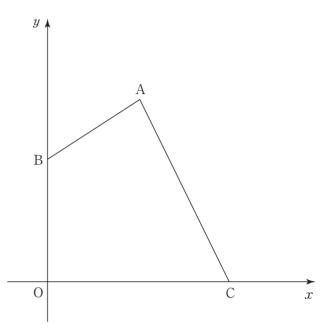
(5) 右の図のように、点 O を中心とする円の周上に点 A,B, C, D があります。線分 AD は点 O を通り、線分 AC と線分 BD の交点を P とします。

 $\widehat{AB}:\widehat{BC}:\widehat{CD}=1:3:2$ となるとき、 $\angle x$ の大きさを求めなさい。

- **3** 下の図のように、放物線 $y = \frac{1}{2}x^2$ と直線 y = -2x + 6 が 2 点 A,B で交わっており、点 B の x 座標が正である。また、点 P は x 軸上にあり、その x 座標は、3 より小さい。次の問いに答えなさい。
 - (1) 直線 y = -2x + 6 と x 軸との交点を C とします。 \triangle APC の面積が 90 となるとき、 点 P の座標を求めなさい。解答欄には考え 方や途中の計算式も書きなさい。
 - (2) △APB の周の長さが最小となるとき、点 P の座標を求めなさい。

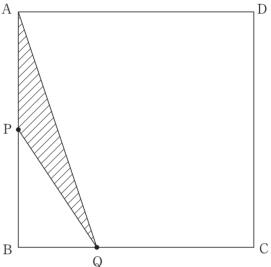
- 4 下の図は、 1 、 2 、 3 、 4 の 4 種類のカードをそれぞれ 4 枚ずつ計 16 枚を 1 列に並べたものです。
 - 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4

大小2個のさいころを使って以下の(1)(2)(3)の順の操作でXの値を決めます。


【操作】

- ① 2個のさいころを同時に1回だけ投げて、大きいさいころの出た目の数をx、小さいさいころの出た目の数をyとします。
- ② 左からx番目のカードとそれより左にあるすべてのカードを列から取り除きます。また、右からy番目のカードとそれより右にあるすべてのカードを列から取り除きます。
- ③ 残ったカードの列の左端の数と、右端の数の和をXとします。

このとき、次の問いに答えなさい。


- (1) X = 2となる確率を求めなさい。
- (2) $X \ge 6$ となる確率を求めなさい。

- 5 下の図のように、座標平面上に 3 点 A (6,12)、B (0,8)、C (12,0) があります。次の問いに答えなさい。
 - (1) 原点 O を通り、△BOC の面積を 2 等 分する直線の式を求めなさい。
 - (2) x軸上に点 D をとり、 $\triangle BOD$ の面積 が四角形 OCAB の面積と等しくなるようにするとき、点 D の座標を求めなさい。ただし、点 D の x 座標は正とします。
 - (3) 点 A を通り、四角形 OCAB の面積を2 等分する直線の式を求めなさい。

- 下の図は1辺の長さが12 cm の正方形 ABCD です。点 P は点 A を出発し、毎秒4 cm の速さで正方形の周上を点 B を通って点 C まで動きます。また、点 Q は点 B を出発し、毎秒2 cm の速さで辺 BC 上を点 C まで動きます。点 P, Q が同時に出発してから x 秒後の △APQ の面積を y cm²とします。次の問いに答えなさい。

 - (2) y = 20 となるとき、x の値をすべて求めなさい。

				, , ;	受験番号	名		
1	問 1 問 2	(1) (1)		(2)			合計	1
2	(1)		(2)	$n = $ $\angle x =$	(3) <i>a</i> =	b =		2
3								
	(1)							
	(2)				答为	<u>``</u>		3
4	(1)			(2)				4
5	(1)			(2)				5
6	(1)			(2)				6

令和3年度 第1回 高校入試 数 学 解答用紙 東洋大学京北高等学校

03—K—①

令和3年度 第1回 高校入試 数 学 解答用紙 東洋大学京北高等学校

03-K-①

***************************************		T.	
受験	氏		
番		*	
号	名		

1

問 1	(1)	- <u>8</u> 32	(2)	134 + 84/2
問2	(1)	x = -8, $y = -7$	(2)	$\chi = \frac{-7 \pm 1/5}{2}$

計

1

(4点×4)

2

(1)	a & (a+8)(a-9)	(2)	n= /60	(3)	a= 2	b = ()
(4)	2√6 cm	(5)	∠x = /35°			(6点×5)

	y=½x²とy=-2x+6を建立して	ここで P(t, o) とおく。 (t < 3)
	$\frac{1}{2}x^2 = -2x + 6$	$\Delta APC = (3-t) \times /8 \times \frac{1}{2}$
	2+4x-(2=0	= 27 - 9 t
	$(\chi_{+6})(\chi_{-2})=0$	DAPC = 90 I'
(1)	7=-6,2	27-9t = 90
	I,T A (-6, 18), B(2,2)	t=-7
	直線ABの式は y=-2x+6	これはてくるを満たず。
	点Cの座標は 0=-22r6	I,7 P(-7,0)
	ス= 3	
	J,7 C(3,0)	答之 P(-7,0)
(2)	$P\left(\frac{6}{5}, 0\right)$	(6点×

3

4

(1)	1 36	(2)	<u>/3</u>

(6点×2)

4

5

(1)	$y = \frac{2}{3}x$	(2)	D (24,)
(3)	y= 6x-24			

(6点×3)

5

6

(1)
$$y = -12x + 72$$
 (2) $x = \sqrt{5}$, $\frac{13}{3}$

(6 Ex2)

6